Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity.

نویسندگان

  • Ute Modlich
  • Jens Bohne
  • Manfred Schmidt
  • Christof von Kalle
  • Sabine Knöss
  • Axel Schambach
  • Christopher Baum
چکیده

Retroviral vectors with long terminal repeats (LTRs), which contain strong enhancer/promoter sequences at both ends of their genome, are widely used for stable gene transfer into hematopoietic cells. However, recent clinical data and mouse models point to insertional activation of cellular proto-oncogenes as a dose-limiting side effect of retroviral gene delivery that potentially induces leukemia. Self-inactivating (SIN) retroviral vectors do not contain the terminal repetition of the enhancer/promoter, theoretically attenuating the interaction with neighboring cellular genes. With a new assay based on in vitro expansion of primary murine hematopoietic cells and selection in limiting dilution, we showed that SIN vectors using a strong internal retroviral enhancer/promoter may also transform cells by insertional mutagenesis. Most transformed clones, including those obtained after dose escalation of SIN vectors, showed insertions upstream of the third exon of Evi1 and in reverse orientation to its transcriptional orientation. Normalizing for the vector copy number, we found the transforming capacity of SIN vectors to be significantly reduced when compared with corresponding LTR vectors. Additional modifications of SIN vectors may further increase safety. Improved cell-culture assays will likely play an important role in the evaluation of insertional mutagenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing the Genotoxicity of Retroviral Vectors in Hematopoietic Cell Gene Therapy

Retroviral vectors, including those derived from gammaretroviruses and lentiviruses, have found their way into the clinical arena and demonstrated remarkable efficacy for the treatment of immunodeficiencies, leukodystrophies, and globinopathies. Despite these successes, gene therapy unfortunately also has had to face severe adverse events in the form of leukemias and myelodysplastic syndromes, ...

متن کامل

Preventing and exploiting the oncogenic potential of integrating gene vectors.

Gene therapy requires efficient gene delivery to cure or prevent disease by modifying the genome of somatic cells. However, gene vectors, which insert themselves into the host genome in order to achieve persistent protein expression, can trigger oncogenesis by upregulating cellular protooncogenes. This adverse event, known as insertional mutagenesis, has become a major hurdle in the field. Vect...

متن کامل

The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy.

gamma-Retroviral vectors (gammaRVs), which are commonly used in gene therapy, can trigger oncogenesis by insertional mutagenesis. Here, we have dissected the contribution of vector design and viral integration site selection (ISS) to oncogenesis using an in vivo genotoxicity assay based on transplantation of vector-transduced tumor-prone mouse hematopoietic stem/progenitor cells. By swapping ge...

متن کامل

Development of Safer Gene Delivery Systems to Minimize the Risk of Insertional Mutagenesis-Related Malignancies: A Critical Issue for the Field of Gene Therapy

Integrating gene delivery systems allow for a more stable transgene expression in mammalian cells than the episomal ones. However, the integration of the shuttle vector within the cellular chromosomal DNA is associated with the risk of insertional mutagenesis, which, in turn, may cause malignant cell transformation. The use of a retroviral-derived vector system was responsible for the developme...

متن کامل

Ectopic Expression of Embryo/Cancer Sequence A (ECSA) in KYSE-30 Cell Line Using Retroviral System

Background Human preimplantation embryonic cells share many similarities with cancer cells such as ability to self-renew, unlimited proliferation and maintenance of the undifferentiated state. Embryo-cancer sequence A (ECSA), also known as developmental pluripotency associated-2 (DPPA2), is a cancer testis antigen (CTA) with unclear biological function yet. Objective: CTAs are expressed normal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 108 8  شماره 

صفحات  -

تاریخ انتشار 2006